If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x+4+7x^2=199
We move all terms to the left:
3x+4+7x^2-(199)=0
We add all the numbers together, and all the variables
7x^2+3x-195=0
a = 7; b = 3; c = -195;
Δ = b2-4ac
Δ = 32-4·7·(-195)
Δ = 5469
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{5469}}{2*7}=\frac{-3-\sqrt{5469}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{5469}}{2*7}=\frac{-3+\sqrt{5469}}{14} $
| 12/20=3/x= | | 2x-(7+3x)=16-(3x+1) | | 5x-3x+29x-9x=8 | | 5x-3x-8=-29+9x | | 2.7=4.4^2x | | 0.6x+1x=192 | | 0.6x+1x=120 | | 1x-0.2x=20 | | 1x-0.3x=840 | | 4x-105=× | | 11+4p−2+5p=4p+8p | | 4x-102=× | | 102-4n=n | | C=0.03x^2-7x+600 | | Y=3.1x+7.1 | | 6x2−42x=0 | | x+12=4x+10 | | 9x-1=2×+13 | | 3x+21=4x-20 | | 2x²+1=5 | | 5^-6x=25^2-2x | | -11/5y+10=4-4/5y | | x+2x/6=3x | | 7x-7+2x=14-2x | | 2p-6=4² | | 35=5(z=9) | | 3y-63+2y=8 | | 6y-13y-18=‐81 | | 0025x^2-12x+4400=0 | | x+x-0.9=19.19 | | 2x-0.1x=19.19 | | 2x-0.1x=19/19 |